

The study of ferroelectric switching using x-ray synchrotron radiation

Carol Thompson

Science with Microbeams APS Scientific Advisory Cross-cut Review January 21, 2004

This work was supported by the U. S. Department of Energy, Basic Energy Sciences, under contract W-31-109-ENG-38, and the State of Illinois, USA, under Higher Education Collaborative Act.

Outline

- Introduction
 - What is a ferroelectric
 - Concentrate on epitaxial films
 - Oxide perovskite system
- Structural response of epitaxial ferroelectric to electric field
 - examples of dynamic studies
- Summary and Conclusions
 - Domain studies, device studies, future studies require microbeams.

Collaborators

- Chris Gunderson (Physics, NIU)
- Marian Aanerud (Masters 2002, Physics, NIU)

Materials Science Division

- Stepnen Streitter (IVISD, AINL)
- Brian Stephenson (MSD, ANL)
- ◆ G. -R Bai (MSD,ANL)
- W. K. Kee (XFD-XRP,ANL)
- Armon McPherson, (currently at Sandia)

What are ferroelectrics?

- Spontaneous permanent electric polarization.
- Unit cell of crystal is non-centrosymmetric (charges separated)
- A macroscopic sample with net zero polarization
 - combination of microscopic polarized domains.

What are ferroelectrics?

Synchrotron techniques are well matched to the study of the ferroelectric systems

- Structure-property relationships control:
 - dielectric, ferroelectric, piezoelectric, electrostrictive, pyroelectric and electro-optical properties

for actuators, sensors, electro-optical switches, non-volatile memory elements, hi-K dielectric, detectors...

- Scattering and diffraction examine the structural aspects that control the properties
 - Symmetry changes, orientation, lattice parameters, domains configurations

Scattering example: fingerprints domain evolution

- Time-resolved scattering
 - 40 nm Pb(Ti,Zr)O₃ film
 - ◆ 200 Hz

Scattering profile can fingerprint the domain configuration in epitaxial films

High speed time-resolved Methods (BESSRC 12-ID-D)

- At each voltage, collect all scattering (area detector)
- Utilizes rocking curve of sample to "scan" q
 - Chopper synchronized (Hybrid fill: Singlet produces < 100 psec x-ray probe pulses
 - Electrical stimulation of device synchronized/delayed so that sample is in particular electrical state during exposure

Close-up photograph of sample manipulation and contact region

Spot size used:5µm x 5µm K-B mirror focus

- X-ray spot must be smaller than the device.
- And x-ray spot must be aligned with the device under electrical stimulation.

More Pictures

Reciprocal Space Map 001

Initial experiments: Focus on position of film Bragg peak region and its immediate neighborhood.

 Scattering shown for epitaxial films (thickness ~ 250nm) of PMN and PMN-PT

PMN₇-PT₃ Structural Response to a Step Voltage

- Response (speed) limited by size of device, not by how fast we can measure with x-rays yet
- Smaller devices smaller beams

Summary and Conclusion

- Structural techniques available at synchrotrons well suited to ferroelectric systems
 - And it's a growing field: see also other groups doing exciting studies
 of ferroelectric films and crystals using microdiffraction, x-ray
 topography, and reciprocal space mapping.
- Examples from our work:
 - Progress in development of techniques to study structural response at 100 psec time scale
 - Need to go to smaller devices, embedded devices
 Progress in switching studies: to 50 μm 'play' device: switching speed limited to ~ 10nsec

Smaller devices allow faster switching Need for microbeam capabilities

Preferred Domain Pinning

- Piezo-response atomic force microscopy:
 - Recent direct observation of preferred domain pinning in fatigued ferroelectric films is reported using piezo-response atomic force microscopy.

Direct observation of inversely polarized frozen nanodomains in fatigued, ferroelectric memory capacitors, E. L. Colla, I. Stolichnov, P. E. Bradely, and N. Setter, **Appl Phys. Lett. 82**, 1604 (2003).

Samples: Pt-PZT-Pt films.

phase amplitude AFM- Piezoreponse image

Time-Resolved Synchrotron X-Ray Scattering

♦ Data taken on 250 nm thick PMN-PT film (PT ~ 30-35%)

Lattice response: time-resolved x-ray diffraction

- Lattice response on different time scales
 - pulse with ~ 15nsec rise time

◆ 6.3 kHz triangle

